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Abstract 

This additional material supports the paper by describing the method, data set and compounds in more detail. 

 

Methods  

Here we provide additional details on the method beyond the description provided in the manuscript, which 

relies on a reference to a previous paper 1. 

With Alchemite, the goal is to solve for the weights and biases of a neural network (depicted in Figure S1) that 

is used within a functional flow chart (depicted in Figure S2), where some outputs of the neural network in the 

first iteration(s) are potentially used as the inputs of subsequent iterations. This is solved iteratively in the 

context of a fixed-point equation 𝑓(𝒙) = 𝒙, for a solution 𝑓 that is orthogonal to the identity 1,2, for example in 

terms of matrices and vectors, finding an 𝐴𝑥 = 𝑥. The trivial solution is 𝐴 = 𝐼, the identity matrix. To have 

predictive power we require that 𝐴 ≠ 𝐼, or more specifically all entries on the leading diagonal of A are zero. For 

the inputs to the first iteration, missing values are replaced by the mean of the available values of the 

corresponding endpoint. An iterative expectation maximization algorithm is applied 3, whereby the weights of 

the neural network are optimized until convergence is reached. 

In the applications described herein, the model will have 𝑁 inputs and outputs, of which 𝑁 = 𝑁𝑑 + 𝑁𝑒; where 

𝑁𝑑 is a number of molecular descriptors and 𝑁𝑒  is the number of experimental assay endpoints. The matrix 

columns corresponding to the descriptor inputs will be complete because these can be computed in advance for 

any molecular structure. However, the assay endpoint columns may be sparsely occupied; some, or even most, 

of the potential experimental data may be missing. The output is a complete matrix of assay endpoints in which 

the missing values have been imputed (the process illustrated in Figure 1). 
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Figure S1. An example network architecture, see Whitehead et al. 1 for more details. 

 

Figure S2. The functional method applied to the network to fill in missing values. Here 𝛾 and 𝛾′ play the role of 

a mixing fraction such that 𝛾′ = 1 − 𝛾, with 𝛾 in the range [0,1]. 
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ADME Assay Definitions and Details  

Here we summarise the ADME assay endpoints in detail: 

PAMPA : Effective mean PAMPA permeability (Pe) 10-6 cm/s 

Protocol : PAMPA model using 1.8 % solution (w/v) of lecithin in dodecane (Avdeef, A; Tsinman, O. European 

Journal of Pharmaceutical Sciences 2006, 28(1-2), 43-50) 

PPB% : plasma protein binding % bound. Separated by species. 

Protocol : Test compound (3μL of 1mM in dmso) incubated at 37°C with plasma (497μL, frozen stock warmed 

directly to 37°C in water bath) for 6h in CO2 incubator. Placed 120μL of this sample in dialysis setup against PBS 

pH 7.4 (120μL) and incubated at 37°C in 5% CO2 atmosphere on rotary shaker at 100rpm. Removed 50μL from 

plasma and buffer sides of dialysis chamber and diluted these with 50μL of PBS and blank plasma, respectively. 

Shake at 1000 rpm for 2 minutes and add 400 μL of acetonitrile. Vortex at 1000 rpm for 10 minutes. Centrifuge 

for 30 minutes at 3,220 g. Transfer 250 μL of the supernatant to new vial and centrifuge again (3,220 g, 30 

minutes). Transfer 100 μL of the supernatant to new vial for analysis. Add 100 μL of distilled water to each 

sample and mix for analysis by LC-MS/MS. 

MLM/RLM/DLM/HLM : mouse, rat, dog and human in-vitro clearance assays in microsomes. Intrinsic clearance 

in uL/min/mg of protein. 

Protocol : mouse/rat/dog/human liver microsome stock solution (12.5μL of 20mg/mL solution), NADPH solution 

(25 μL of 10mM in phosphate buffer), and phosphate buffer (210μL, 100mM, pH7.4) incubated at 37°C for 

10mins. Added control (verapamil) or test compound (2.5μL of 100μM solution in dmso) and incubated at 37°C. 

Removed 25μL aliquots of solution at 0.5,5,10,15,20,30 minutes. Each aliquot was quenched with cold 

acetonitrile (125μL), centrifuged at 3220 g for 30 minutes. Transfer 100 μL of the supernatant to a new vial, 

diluted with water (100 μL), mixed well and analyzed using UPLC/MS/MS. Peak areas were determined from 

extracted ion chromatograms. The slope value, k, was determined by linear regression of the natural logarithm 

of the remaining percentage of the parent drug vs. incubation time curve. The in vitro half-life (in vitro t½) was 

determined from the slope (in vitro t½ = -Ln2/k). In vitro intrinsic clearance (in vitro CLint, in µL/min/mg protein) 

was calculated from the in vitro t½ (in vitro Clint = [(Ln2 x volume of incubation)/(in vitro t½ x amount of 

protein]). 

CYP3A4_%Inhibition / CYP2D6_%Inhibition : single point percentage CYP inhibition at 10 μM of compound. 

Protocol :  into each well of a 96 deep-well screening plate is placed test compound stock solution (1μL of 10mM 

solution in dmso) [or vehicle or known standard inhibitor], human liver microsome stock solution (2μL of 

20mg/mL solution), testosterone stock solution (1μL, 8mM in acetonitrile) and phosphate buffer (176μL, 

100mM, pH7.4). Incubate plate at 37°C for 15 minutes before addition of NADPH solution (20 μL of 10mM in 

phosphate buffer). Incubate plate at 37°C for 10 minutes. Quench reaction with 3% formic acid in acetonitrile 

(300μL, cold). Centrifuge the plate at 3220 g for 40 minutes. Transfer 100 μL of the supernatant to a new plate, 

dilute with water (100 μL), mix well and analyze using UPLC/MS/MS. The inhibition of P450 3A4 enzyme in 

human liver microsomes is measured as the percentage decrease in the activity of marker metabolite formation 

compared to non-inhibited controls. 

KinSol_pH7.4_ kinetic solubility μM or μg/mL : 

Protocol : Compound stock solution (15μL, 10mM in dmso) diluted by addition of pH7.4 PBS (485μL), stirred at 

1100rpm at 25°C for 2h, transferred to filter plate, vacuum filtered. Diluted 5μL of filtrate into acetonitrile:water 

(495μL, 1:1). LCMS comparison of compound concentration vs 3μM standard solution of test compound. 
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Compound Property and Chemical Space Analysis  

In order to illustrate the diversity of compounds explored in the data sets used in this paper, we present chemical 

space plots to illustrate the diversity of compounds in the data sets relating to each of the projects. These 

chemical space plots were generated using the t-SNE algorithm 4 applied to the distribution of compounds in 

the space of compound descriptors used as inputs to the Alchemite and QSAR models.  

The chemical space plots below show the distribution of compounds related to Project A only. All of these 

compounds were included in the initial data set. 

  

Figure S3. Chemical space plots for the compounds in Project A only. On the left, the points are coloured by the 

series labels assigned to the compounds by the project chemists. On the right, the points are coloured by the 

measured Project A Bioactivity 1 value for each compound; red is more active and yellow is less active with the 

colouring proportional to pIC50.  

The chemical space plots below show the distribution of compounds related to Project B only. 
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Figure S4. Chemical space plots for the compounds in Project B only. On the left the points are coloured by the 

series labels assigned to the compounds by the project chemists. On the right, the points are coloured by the 

measured Project B Bioactivity 1 value for each compound; red is more active and yellow is less active with the 

colouring proportional to pIC50.  

The following table summarises the range of values for the key molecular properties: Molecular weight (MW), 

calculated logP (clogP) and number of rotatable bonds (RotB), numbers of hydrogen bond acceptors and donors 

(HBA and HBD) and topological polar surface area (TPSA) calculated using StarDrop 5A single data set is shown 

for Project A. For Project B the initial data set, as used in the preliminary comparison, and additional compounds 

which formed blocks 1, 2 and 3 in the temporal study are shown separately.  

Table S1. List of number of compounds in each series for the datasets along with ranges of properties.  

Name of Series Number of 
Compounds 

RotB LogP MW 

Project A : Misc. 771 0 to 24 -2.8 to 6.6 59 to 549 

Project A : Series A 3 35 to 48 -0.9 to -0.1 768 to 995 

Project A : Series B 44 1 to 9 -0.9 to 2.7 99 to 225 

Project A : Series C 48 2 to 12 0.2 to 6.1 211 to 401 

Project A : Series D 36 6 to 14 0.6 to 3.3 177 to 316 

Project A : Series E 215 10 to 30 1.4 to 6.3 216 to 627 

Project A : Series F 243 6 to 22 0.6 to 5.1 221 to 446 

Project A : Series G 486 6 to 20 1.2 to 7.0 293 to 571 

Project A : Series H 488 7 to 23 -0.2023 to 5.5 294 to 551 

Project A : Series J 258 6 to 19 1.488 to 5.1 324 to 542 

Project A : Series K 77 4 to 19 0.6 to 5.9 226 to 484 

Project B Original : Misc. 46 0 to 18 -0.7 to 3.9 138 to 419 

Project B Original : Series A 252 5 to 26 -0.9 to 4.8 232 to 580 
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Project B Original : Series B 107 4 to 15 -1.7 to 3.2 164 to 390 

Project B Original : Series C 55 9 to 16 1.0 to 4.8 272 to 508 

Project B Original : Series D 41 11 to 20 1.5 to 5.6 247 to 454 

Project B Original : Series E 37 1 to 15 -0.3 to 2.8 162 to 297 

Project B Later : Misc. 284 1 to 23 -0.5 to 5.0 123 to 484 

Project B Later : Series A 342 5 to 23 -0.5 to 5.5 302 to 627 

Project B Later : Series C 171 9 to 27 1.4 to 4.4 297 to 579 

Project B Later : Series D 77 12 to 25 2.1 to 5.4 324 to 556 

Name of Series Number of 
Compounds 

HBD HBA TPSA 

Project A : Misc. 771 0 to 8 0 to 11 15.27 to 197.4 

Project A : Series A 3 5 to 7 12 to 15 346.6 to 447.8 

Project A : Series B 44 0 to 2 1 to 5 12.03 to 79.29 

Project A : Series C 48 0 to 2 0 to 2 15.79 to 82.67 

Project A : Series D 36 0 to 1 1 to 3 20.31 to 53.17 

Project A : Series E 215 0 to 3 1 to 7 23.55 to 142.4 

Project A : Series F 243 0 to 2 0 to 4 16.13 to 92.5 

Project A : Series G 486 0 to 3 1 to 7 32.34 to 135.8 

Project A : Series H 488 0 to 2 1 to 6 41.13 to 125.2 

Project A : Series J 258 0 to 2 2 to 6 22.0 to 109.2 

Project A : Series K 77 0 to 3 3 to 10 55.13 to 168.0 

Project B Original : Misc. 46 0 to 3 1 to 7 37.3 to 139.8 

Project B Original : Series A 252 0 to 4 2 to 9 70.42 to 166.8 

Project B Original : Series B 107 0 to 3 1 to 6 43.37 to 104.5 

Project B Original : Series C 55 0 to 2 1 to 4 36.36 to 96.17 

Project B Original : Series D 41 0 to 1 3 to 5 46.61 to 92.43 

Project B Original : Series E 37 0 to 2 2 to 5 55.12 to 87.12 

Project B Later : Misc. 284 0 to 3 0 to 8 12.03 to 126.0 

Project B Later : Series A 342 1 to 4 2 to 9 84.66 to 180.2 

Project B Later : Series C 171 0 to 3 1 to 6 43.78 to 110.2 

Project B Later : Series D 77 0 to 1 2 to 6 37.38 to 96.02 

 

From Table S1 we can see that series A, C and D as well as Miscellaneous compounds were all continued as Project 

B progressed. The initial data included 252 examples of Project A compounds, but only around 50 compounds for 

each of C, D and Misc. This indicates that the new compounds in project B expanded significantly on the initial data.  
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Project A Data Distributions  

Figures S5 through S17 show the distributions of the experimentally measured properties for Project A, which 

had measured values for 3 bioactivities, 2 cell-based activities and 8 ADME properties. The inequality symbols 

have been removed from these data to highlight the range in the project. This can lead to spikes where many 

data points have a similar recorded inactive value (e.g. pIC50 of 4, which corresponds to 100 𝜇𝑀).  

 
Figure S5. Distribution of experimentally measured Project A Bioactivity 1 values.  

 

Figure S6. Distribution of experimentally measured values of Project A Bioactivity 2.  
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Figure S7. Distribution of experimentally measured values of Project A Bioactivity 3.  

 
Figure S8. Distribution of experimentally measured values of Project A Cell-based Activity 1.  
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Figure S9. Distribution of experimentally measured values of Project A Cell-based Activity 2.  

 
Figure S10. Distribution of experimentally measured values of CYP2D6 Percent Inhibition for Project A 

compounds.  
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Figure S11. Distribution of experimentally measured values of CYP3A4 Percent Inhibition for Project A 

compounds.  

 
Figure S12. Distribution of experimentally measured values of Human Liver Microsome Intrinsic Clearance for 

Project A compounds.  
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Figure S13. Distribution of experimentally measured values of Human Plasma Protein Binding for Project A 

compounds.  

 

Figure S14. Distribution of experimentally measured values of Mouse Liver Microsome Intrinsic Clearance for 

Project A compounds.  
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Figure S15. Distribution of experimentally measured values of Mouse Plasma Protein Binding for Project A 

compounds.  

 

Figure S16. Distribution of experimentally measured values of PAMPA Permeability for Project A compounds.  
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Figure S17. Distribution of experimentally measured values of Kinetic Solubility for Project A compounds.  

 

 

Project B Data Distributions  

Figures S18 through S30 show the distributions of the experimentally measured properties for Project B, which 

had measured values for 5 bioactivities and 8 ADME properties. The inequality symbols have been removed 

from these data to highlight the range in the project. This can lead to spikes where many data points have a 

similar recorded inactive value (e.g. pIC50 of 4, which corresponds to 100 𝜇𝑀). 

 

Figure S18. Distribution of experimentally measured Project B Bioactivity 1 values.  
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Figure S19. Distribution of experimentally measured Project B Bioactivity 2 values.  

 
Figure S20. Distribution of experimentally measured Project B Bioactivity 3 values.  
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Figure S21. Distribution of experimentally measured Project B Bioactivity 4 values.  

 
Figure S22. Distribution of experimentally measured Project B Bioactivity 5 values.  
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Figure S23. Distribution of experimentally measured values of CYP2D6 Percent Inhibition for Project B 

compounds.  

 
Figure S24. Distribution of experimentally measured values of CYP3A4 Percent Inhibition for Project B 

compounds.  
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Figure S25. Distribution of experimentally measured values of Human Liver Microsome Intrinsic Clearance for 

Project B compounds.  

 
Figure S26. Distribution of experimentally measured values of Human Plasma Protein Binding for Project B 

compounds.  
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Figure S27. Distribution of experimentally measured values of Kinetic Solubility for Project B compounds.  

 
 

Figure S28. Distribution of experimentally measured values of Mouse Liver Microsome Intrinsic Clearance for 

Project B compounds.  
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Figure S29. Distribution of experimentally measured values of Mouse Plasma Protein Binding for Project B 

compounds.  

 
Figure S30. Distribution of experimentally measured values of PAMPA Permeability for Project B compounds.  
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Temporal Chemical Space Analysis  

It is instructive to check the changes in chemical space in the temporal study. The chemical space plot in Figure 

S31 shows the full data set combining compounds from both Projects A and B, on which the series labels are 

shown. We note that the series labels generated by the chemists do not correspond perfectly to this particular 

embedding but captures the majority of compounds. It is also notable that there is an overlap of Miscellaneous 

compounds between Projects A and B.  

 

Figure S31. Chemical space of all compounds from all projects. Points are coloured by series with example 

notation “PA – C” standing for “Project A, Series C”.  
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Figure S32 shows the three blocks of additional compounds, illustrating the changes in chemical space explored 

by Project B as it progressed. The initial data set used to train the first model for the temporal analysis (labelled 

Train)  is quite diverse.  Broadly speaking, the latter three temporally split blocks explored by Project B 

concentrate in series AB, CB and DB, as well as a number of Miscellaneous(B) compounds. 

  
Figure S32. Chemical space of the three new blocks of compounds in reference to the initial data. From left to 

right, positions of compounds from block 1,2 and 3 are shown in dark blue against the initial data in light blue. 

Block 3, which was used as the independent test set in the temporal analysis, has a reasonable degree of 

sampling from series PB - C, the left hand cluster of PB - A and an unlabelled sub-cluster of the Miscellaneous 

structures (top right), but a small number also from series PA- E and PB - D and perhaps a Misc. sub-cluster close 

to series PB - B. 

Chemical Space Uncertainty Analysis  

The chemical space above was a good tool visualisation of the uncertainty in predictions and how they are 

localised with chemical series. There are 18 assays which are fully imputed for Projects A and B using a final 

model built on all of the data. Each imputed value has an error bar analysis associated with it, and a full cross 

inspection requires several plots which are shown in Figure S33 to S48. To generate these the final fully imputed 

matrices of the data set were plotted in the chemical space for both projects (Figure S31) and coloured by 

uncertainty in prediction. 

These indicate that certain assays have specific series for which predictions are more confident. In general, 

considering predictions with smaller error bars will bring the chemistry back to the descriptor space that is well 

characterised by the training set. Equivalently extrapolating from the known space will result in an increase in 

the size of the error bar. This represents the classic trade-off between exploitation of previously well-sampled 

areas of chemical space (where predictions can be made with higher confidence) and exploration of less-well 

understood, and hence less confidently predicted, chemical space. 

In the following figures, the points are coloured from low uncertainty in red (representing high confidence) and 

high uncertainty in yellow (representing low confidence). The colour scales in subsequent plots are normalised 

for each assay. 

Project A Activity Uncertainty Plots  

Figures S33 to S37 show the distributions of uncertainties in the imputed values for the Project A bioactivites 

and cell-based activities. Data for these endpoints have only been measured for compounds withing Project A 

and therefore, as expected, we can see that the greatest confidence in the corresponding imputed values are 

highest for series related to this project. For example, we can see in Figure S35 that Project A Cell-based Activity 

2 is most confidently imputed for series PA - G and PA -H (left and bottom).  Cell-based Activity 2 is one of the 

most locally modelled endpoint, which may partly explain why QSAR models failed to predict it. 
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All of the Project A activities are more confidently imputed for the clusters corresponding to series PA - G and 

PA - H. Confidence is exhibited in series PA - E and PA - J for Bioactivities 1,2 and 3 and for Cell-based Activity 1. 

Bioactivity 2 is confidently imputed for many of the series, including miscellaneous compounds and is 

approaching a global model for this project. 

 

Figure S33. Uncertainty distribution in chemical space for predictions of Project A Bioactivity 1. 
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Figure S34. Uncertainty distribution in chemical space for predictions of Project A Bioactivity 2. 
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Figure S35. Uncertainty distribution in chemical space for predictions of Project A Bioactivity 3. 
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Figure S36. Uncertainty distribution in chemical space for predictions of Project A Cell Activity 1. 
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Figure S37. Uncertainty distribution in chemical space for predictions of Project A Cell Activity 2. 
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Project B Activity Uncertainty Plots  

Figures S38 to S42 show the distributions of uncertainties in the imputed values for the Project B activities. Data 

for these endpoints have only been measured for compounds within Project B and therefore, as expected, we 

can see that the greatest confidence in the corresponding imputed values are highest for series related to this 

project. Project B activities are confidently imputed in series AB, CB and sometimes DB. The series labelled AB is 

split into two clusters in this embedding, and sometimes only half is well predicted. Project B Bioactivity 1 is 

better predicted across miscellaneous compounds. 

 

Figure S38. Uncertainty distribution in chemical space for predictions of Project B Bioactivity 1. 
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Figure S39. Uncertainty Uncertainty distribution in chemical space for predictions of Project B Bioactivity 2. 
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Figure S40. Uncertainty distribution in chemical space for predictions of Project B Bioactivity 3. 
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Figure S41. Uncertainty distribution in chemical space for predictions of Project B Bioactivity 4. 
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Figure S42. Uncertainty distribution in chemical space for predictions of Project B Bioactivity 5. 
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Project A and B ADME Endpoints  

Figures S43 to S50 show the distributions of uncertainties for the imputed ADME properties. CYP inhibition is 

less localised than activity but does seem to be more confidently imputed within strongly defined series/clusters. 

Kinetic solubility does not strongly distinguish between clusters. This suggests the error bars are all of a similar 

size. Intrinsic clearance models are similar and do not favour any of Project A and B in particular. 

 

Figure S43. Uncertainty distribution in chemical space for predictions of CYP2D6 Inhibition. 
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Figure S44. Uncertainty distribution in chemical space for predictions of CYP3A4 Inhibition. 
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Figure S45. Uncertainty distribution in chemical space for predictions of Human Intrinsic Clearance. 
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Figure S46. Uncertainty distribution in chemical space for predictions of Kinetic Solubility. 
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Figure S47. Uncertainty distribution in chemical space for predictions of Mouse Intrinsic Clearance. 
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Figure S48. Uncertainty distribution in chemical space for predictions of PAMPA Permeability. 
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Figure S49. Uncertainty distribution in chemical space for predictions of Human Plasma Protein Binding. 
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Figure S50. Uncertainty distribution in chemical space for predictions of Mouse Plasma Protein Binding. 
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Discussion on Random Insertion of Data and Controls  

In the process of review there were some very interesting questions: One for example is “What would happen 

if there was a column of completely random data inserted as a challenge?” 

Due to the nature of the SMARTS matching patterns in the StarDrop descriptors any one of the individual descriptors 

is likely to be essentially random (do not strongly correlate) compared to certain endpoints. Only in combination do 

they describe complex patterns. There are a few cases to consider for the insertion of random data:  

 

1) If a full column of random noise were added, this could be considered as including an additional irrelevant 

chemical descriptor to the descriptor matrix. We have found the model to be robust to this because, for each 

endpoint, we select N features which are most relevant to the endpoint for the final model. N is a 

hyperparameter here. Thus, if a noisy column is added, this will almost certainly be disregarded for meaningful 

dataset sizes. 

2) In terms of model predictions for the noisy column, the 𝑅2  metric compares against the case of random data 

(with fixed variance). So, we would expect models of 𝑅2 = 0 for random columns. If the columns is genuinely 

filled with noise, it will be impossible for any algorithm to predict a held out test set, thus on test data, Alchemite 

will certainly reproduce a model with 𝑅2 = ±𝜀 for some rapidly shrinking 𝜀 with large number of test samples. 

 

3) In terms of partially filled random columns (i.e. simulated assays), if such a random sparse column was  

co-filled with an experimental column, such that there were M pairs of data between the two columns, 

depending on the underlying distribution of the data to achieve a fixed variance one can derive a p-test type 

quantity to measure confidence in a genuine M-pair correlation over random noise with the same fixed variance; 

i.e. 3 co-occurring data points are likely to spuriously correlate, but in the limit of large N, this will quickly be 

ruled out, thus the column will not be selected by the mechanism in case 1).  

4) *Pathological columns* of course one could probably engineer some kind of disruptive column. I think it 

would be an interesting case for adversarial learning to design a random distribution from which column 

elements are drawn which is maximally misleading for example. 

Discussion on Breakdown of Imputation  

Another interesting question was “Can one tell when the underlying imputation breaks down?” 

Within the bounds of this particular study a useful indicator for telling whether the imputation breaks down is 

that the error bars will grow rapidly as imputed values are assigned to unknown portions of chemical space. As 

quoted in the main text: 

“Each missing element of the data matrix has an ensemble of predictions filled in from Alchemite and the 

distribution of this ensemble can take many shapes. The mean and the standard deviation of this distribution 

gives a unique prediction and error bar for each missing value, where the error bar represents one standard 

deviation about the mean. In the case where descriptor values far from the training data are provided, the error 

bar will grow to show the algorithms has no knowledge of that region of chemical space.” 

To give a preview of a more mathematical formalism, which oversteps this study, one needs to consider that 

imputation is affected by a few different things: 

 

1) The sparsity of the dataset, (we can try to dictate this with two sparsity parameters 𝜆1, 𝜆2 ∈ [0,1]) 

- In the limit that there is no experimental data at all 𝜆1 = 𝜆2 = 0.  

- If the experimental data only appear as rows (horizontal stripes in the data matrix) 𝜆1 = 1, 𝜆2 = 0, then 

we have full understanding of the cross correlation between assays, but there are now two types of 
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compounds, virtual compounds with no experimental data (revert to QSAR model), and compounds 

with full experimental data (no need to impute, however models can be well validated) 

- If the experimental data only appear as full columns 𝜆1 = 0, 𝜆2 = 1, then these columns are essentially 

descriptors, and empty columns are modellable.  

- Finally, a full block of experimental data 𝜆1 = 𝜆2 = 1. 

- If 𝜆1 = 𝜆2 ∈ [0,1], for example a value of 0.5, this is a balanced sparsity, i.e. a uniform random chance 

that any particular cell is present (or missing), otherwise there is a column/row asymmetry. 

So, there will be an underlying percolation or connectivity that is required, based on the granularity or sparsity 

of present cells, which is necessary but not sufficient for a good imputation.  

2) The quality of the correlations in the dataset: 

- Given the required overlap, as mentioned above, then one needs enough dynamic range in each column 

to extract a correlation which is useful. 

- One also requires enough co-present points that reflect this range, so even if the range of each column 

is well represented, if the range of the overlap is small, then it will be hard to develop a correlation 

beyond a simple intersection point. 

- If two endpoints only correlate partially (for example activities at different concentrations), then there 

will be a useable region and an unusable region (consider the case of overlapping functions tanh(𝑥) 

and 𝑥. This can be captured by a non-local network, but not a linear correlation analysis for example, 

which would make wrong predictions in the flattened ends of the sigmoidal curve. 

3) Is there enough information to recreate the imputed signal accurately 

- We might be missing something essential for certain endpoints. 

- There will always then be a portion of the signal that cannot be recreated as with other modelling 

techniques.  

 

Detailed Comparison Between QSAR Models and Alchemite  

For the Alchemite model built using the initial data, we used 4 QSAR methods and quoted the best of the four 

for each endpoint for comparison with Alchemite. As these methods each have their own strengths and 

weaknesses, it is useful to show a breakdown of each result and this is presented in table S2. 

Table S2. Table of coefficient of determination values for each of the four types of QSAR model and Alchemite 

on each of the activity and ADME endpoints from both projects. Here PLS is partial least squares, RBF is radial 

basis functions, RF is random forest and GP is Gaussian process. The average and best of the QSAR scores is also 

reported. 

 

Endpoint QSAR BEST 
QSAR 
AVERAGE PLS RBF RF GP Alchemite 

CYP2D6 0.4 0.28 0.08 0.37 0.26 0.4 0.63 

CYP3A4 0.26 0.22 0.15 0.24 0.26 0.21 0.3 

HLM 0.11 -0.02 -0.08 0.07 0.11 -0.18 0.43 

MLM 0.51 0.41 0.31 0.51 0.34 0.49 0.54 

KinSol 0.54 0.48 0.4 0.54 0.44 0.54 0.5 

PAMPA 0.28 0.22 0.19 0.18 0.24 0.28 0.21 
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Human PPB 0.6 0.56 0.48 0.56 0.6 0.58 0.72 

Mouse PPB 0.56 0.51 0.56 0.49 0.47 0.53 0.63 

A Act. 1 0.53 -7.71 0.19 -31.8 0.53 0.23 0.94 

A Act. 2 0.67 0.63 0.64 0.56 0.63 0.67 0.79 

A Act. 3 0.54 0.44 0.54 0.25 0.5 0.46 0.92 

A Cell 1 0.73 0.695 0.73 0.72 0.62 0.71 0.84 

A Cell 2 -0.27 -0.565 -0.27 -1.22 -0.29 -0.48 0.57 

B Act. 1 0.44 0.3875 0.3 0.43 0.44 0.38 0.65 

B Act. 2 0.52 0.415 0.28 0.52 0.46 0.4 0.82 

B Act. 3 0.53 0.4475 0.37 0.45 0.53 0.44 0.82 

B Act. 4 0.46 0.41 0.3 0.44 0.46 0.44 0.62 

B Act. 5 0.57 0.5325 0.47 0.57 0.56 0.53 0.71 

 

 

Sensitivity to Actives  

Some QSAR models are used to predict which analogs to make in the next round of synthesis rather than virtual 

screening. In this limit resolution between actives is important. We can analyse the model results to this end. 

An example for Project B Bioactivity 2 is shown in Figure S51. Here for a definition of a cutoff between active 

and inactive we can see the RMSE of compound predictions for the `actives’ (blue) and `inactives’ (orange). The 

RMSE for active predictions is low. The dotted lines around each curve show the standard error from the RMSE 

estimator. The active curve is also confidently low. Only for very active i.e. pIC50 >7 does the RMSE value start to 

rise as we enter the extrapolative regime. 

 

Figure S51. RMSE of all predictions to the left and right of a `cutoff’ for activity for Project B Bioactivity 2. The RMSE 

of actives is low for almost all definitions of cutoff. The dotted lines indicated the standard error in the RMSE. 
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